【Las leyes de Mendel y su importancia】 | ADNTRO

Las leyes de Mendel, el padre de la genética

Las leyes de Mendel, también conocidas como la genética mendeliana, son el conjunto de reglas básicas sobre la herencia genética, es decir, cómo se transmiten las distintas posibilidades (alelos) que existen para una posición concreta (locus) de un gen postuladas por un monje agustino austriaco llamado Gregor Mendel.

Los trabajos de Mendel

Se postularon como conclusiones de un laborioso trabajo llevado a cabo con líneas puras de 33 variedades de la planta del guisante. Una línea pura es aquella que es homocigoto para todos sus caracteres. ¿Y qué quiere decir eso de que sea homocigoto? Para un mismo gen tenemos dos posibilidades (alelos). Si estos alelos son iguales en una misma persona o planta diremos que ese individuo es homocigoto. En caso de presentar dos alelos diferentes, el individuo será heterocigoto.

Mendel, para asegurarse de que trabajaba con líneas puras, sometió a todas sus variedades de guisante a autofecundación durante dos años (dos generaciones sucesivas). Las distintas variantes de plantas diferían en las siguientes características (Ilustración 1):

Ilustración 1. Características estudiadas por Mendel
  1. Forma de las semillas: lisas vs rugosas
  2. Color de las semillas: verde vs amarillo
  3. Color de la flor: blanco vs púrpura
  4. Color de la vaina: verde vs amarillo
  5. Forma de la vaina: lleno vs constreñido
  6. Lugar de las vainas: axiales vs terminales
  7. Tamaño de la planta: normal vs enana

¿Y por qué guisantes? ¿Era un fanático de ellos y los comía a todas horas? Podría haber sido un buen motivo, pero no fue el caso. Los guisantes son baratos, la planta ocupa poco espacio, tienen un tiempo generacional relativamente corto, produce muchos descendientes, presentan variabilidad genética (variedades diferentes que difieren en diversas características) y es una planta que se autofecunda y en caso de querer hacer cruces es fácil de controlar (cortas las anteras de un parental (P1) y con un pincel recoges el polen del otro parental (P2).

Empezó con cruces sencillos, observaba la descendencia (F1) resultante de dos parentales que diferían únicamente en una de las características mencionabas anteriormente. Una vez que conocía la transmisión de cada carácter por separado (explicado en “patrones de herencia mendeliana”), empezó a realizar cruces entre parentales que diferían en dos características.

¿Cuáles son los patrones de Herencia Mendeliana?

Los patrones de herencia mendeliana explican cómo se hereda un carácter y qué determina el fenotipo que adquieren. Como veremos en la sección de “excepciones de las leyes de Mendel”, estos patrones no son aplicables para todos los locus del genoma.

1.Herencia dominante autosómica (AD): este tipo de herencia afecta a los cromosomas autosomales, es decir, a todos aquellos que no son ni el cromosoma X ni el cromosoma Y. El fenotipo estará determinado por el alelo dominante. Un alelo dominante es aquel que predomina ante el resto de alelos tengamos una copia (heterocigoto) o dos (homocigoto dominante). Un ejemplo de la herencia AD es la acondroplasia, forma más frecuente del enanismo (Figura 1).

Figura 1. Cruce con un patrón de herencia AD. El alelo A (enanismo) domina sobre el alelo a (no enanismo), por lo que siempre que haya una copia del alelo A, el individuo presentará un fenotipo enano. Para que el individuo no manifieste la enfermedad, deberá poseer dos copias del alelo recesivo.

2. Herencia recesiva autosómica (AR): este tipo de herencia afecta a los cromosomas autosomales. En este caso, necesitaremos dos copias del alelo asociado a la enfermedad para que el individuo la manifieste. Un ejemplo de enfermedad que se rige por este patrón es la anemia falciforme – alteración de los glóbulos rojos (Figura 2).

Figura 2. Cruce con un patrón de herencia AR. El alelo A (eritrocitos normales) predomina sobre el alelo a (anemia falciforme) lo que significa que para que un individuo manifieste la enfermedad necesitará tener dos copias del alelo a. En este ejemplo, ninguno de los descendientes lo manifiesta, sin embargo, todos los individuos son portadores de la enfermedad y podrán transmitirlo a sus descendientes.

3. Herencia ligada al cromosoma X: este tipo de herencia es un poco más compleja. Los alelos se heredan únicamente a través del cromosoma X. Las mujeres poseen dos copias del cromosoma X (XX), mientras que los hombres solo poseen una (XY). Dentro de la herencia ligada al cromosoma X nos podemos encontrar con la dominante (una única copia basta) o recesivo (necesitamos dos copias del alelo defectuoso). Para este último tipo de herencia ligada al cromosoma X, encontraremos diferencias en función del género. En el caso de las mujeres, necesitaremos dos copias del alelo recesivo para que manifiesten la enfermedad. Sin embargo, para los hombres una única copia es suficiente para manifestar la enfermedad ya que solo poseen un cromosoma X y no hay otro que “compense” ese alelo defectuoso). Veamos el ejemplo del daltonismo (herencia recesiva ligada al cromosoma X, Figura 3).


Figura 3. Cruce con un patrón de herencia recesiva ligado al cromosoma X. El daltonismo se transmite con el cromosoma X (Xd). Ninguno de los individuos de la descendencia será daltónico, pero las dos mujeres será portadoras de daltonismo y podrán tener descendencia daltónica (25% de probabilidades).

Las 3 Leyes de Mendel

Gracias a toda la información que obtuvo de sus experimentos postuló tres importantes leyes que nos ayudan a entender la genética. Sin embargo, este reconocimiento lo obtuvo muy posterior a publicar su trabajo en 1858 ya que, a pesar de que realizó copias escritas a mano para todos los científicos reconocidos de la zona, nadie supo valorar sus leyes y Mendel, el padre de la genética, se murió sin saber la gran aportación que había hecho a la ciencia en general y a la genética en particular. Fue en 1900 cuando se redescubrió su trabajo y se pusieron en valor sus leyes:

1.Primera Ley de Mendel o principio de la uniformidad: si se cruzan dos líneas puras, los descendientes de la primera generación serán iguales entre sí tanto a nivel fenotípico (apariencia) como a nivel genotípico (alelos). Asimismo, todos los descendientes serán iguales en apariencia (fenotipo) a uno de los progenitores. El fenotipo estará determinado por el alelo dominante. El alelo dominante se representa en mayúscula y el recesivo en minúscula. Veamos un ejemplo para el carácter color (A > a; el alelo “A” (amarillo) domina sobre el alelo “a” (verde)). En la figura 4 podemos ver la explicación representada de forma visual.


Figura 4. Cruce de líneas puras permite postular el principio de la uniformidad. Al cruzar un parental homocigoto dominante (planta de guisante amarillo) con un homocigoto recesivo (planta de guisante verde) obtenemos una primera generación (F1) homogénea. Todos los descendientes son heterocigotos y presentan el fenotipo dominante (amarillo). En la línea de los gametos podemos ver los distintos alelos que presentan los parentales. Al combinarlos obtenemos los genotipos heterocigotos.

2. Segunda Ley de Mendel o principio de la segregación: defiende que los alelos del mismo locus segregan (se separan) dando lugar dos clases de gametos en igual proporción, mitad de los gametos con el alelo dominante (A) y mitad con alelo recesivo (a). Esta conclusión la obtuvo al autofecundar la F1 (heterocigotos) procedente del cruce de dos parentales de líneas puras que difieren en un carácter (Figura 1) y obtener una segunda generación de descendientes (F2) de los cuales ¾ de los fenotipos coinciden con el fenotipo del parental homocigoto dominante (amarillo) y ¼ lo hace con el fenotipo del parental homocigoto recesivo (verde). La segregación de los alelos en la producción de los gametos asegura variación genética en la descendencia. En la figura 5 podemos ver la explicación representada de forma visual.


Figura 5. Cruce entre la primera generación permite postular el principio de la segregación. Al cruzar un parental heterocigoto (planta de guisante amarillo) con otro heterocigoto (planta de guisante amarillo) obtenemos una segunda generación (F2) heterogénea. ¾ de los descendientes presenta el fenotipo dominante (amarillo) y ¼ de los descendientes presentan el fenotipo recesivo (verde). En la línea de los gametos podemos ver los distintos alelos que presentan los parentales. Al combinarlos obtenemos ¼ de homocigotos dominantes, ½ de heterocigotos y ¼ de homocigotos recesivos.

3. Tercera Ley de Mendel o principio de la combinación independiente: esta ley la propuso realizando cruces entre parentales que deferían en dos caracteres. Mendel concluyó que diferentes rasgos son heredados independientemente unos de otros, no existe relación entre ellos, lo que significa que el patrón de herencia de un rasgo no afectará al patrón de herencia de otro (siempre y cuando los genes no estén ligados). Para comprobar el principio de la segregación realizó retrocruzamientos o cruzamientos de prueba. Esto consiste en cruzar los heterocigotos de la F1 (AaBb) con el parental recesivo (aabb). Mediante este cruce se puede comprobar el tipo y la proporción de gametos que producen los heterocigotos ya que el fenotipo de los descendientes de este cruce coincide con los gametos producidos por el heterocigoto de la F1 dado que el parental recesivo únicamente produce gametos de tipo recesivo. Visualicemos esta ley cruzando plantas que difieren en el color (A = amarillo; a = verde) y la forma del guisante (B = liso; b = rugoso) (Figura 6).


Figura 6. Cruce líneas puras que difieren en dos caracteres permite postular el principio de la combinación independiente. Al cruzar un parental homocigoto dominante (planta de guisante amarillo liso) con un homocigoto recesivo (planta de guisante verde rugoso) obtenemos una primera generación (F1) homogénea. Todos los descendientes son heterocigotos y presentan el fenotipo dominante (amarillo liso). En la línea de los gametos podemos ver los distintos alelos que presentan los parentales. Al combinarlos obtenemos los genotipos heterocigotos.

EXCEPCIONES DE LAS LEYES DE MENDEL

Las primeras excepciones a las Leyes de Mendel se describieron a principios del siglo XX. A día de hoy se conocen muchos fenómenos que no se rigen por las leyes de Mendel. Entre ellos podemos destacar:

  1. Dominancia intermedia: no existe alelo dominante ni alelo recesivo. En los individuos heterocigotos se mezclan las características correspondientes a los dos alelos. Un ejemplo de dominancia intermedia es el del clavel. Cuando cruzamos un clavel rojo (CR) con un clavel blanco (CW) (Ilustración 2).

Ilustración 2. Dominancia intermedia

2. Codominancia: el estado heterocigoto no hay alelo recesivo, sino que ambos se comportan como dominantes, tal como en la herencia intermedia, pero a diferencia de esta última, ambas características se manifiestan sin mezclarse. Un ejemplo de codominancia es el color de las begonias (Foto 1) o el sistema ABO. Las personas que poseen el grupo sanguíneo AB presentan simultáneamente los antígenos A y B, de manera que ambos alelos se están expresando en el heterocigoto (Ilustración 3).


Ilustración 3. Codominancia

3. Carácter nuevo: es posible que los individuos de la F1 presenten un fenotipo nuevo que no es el resultado de un carácter intermedio entre ambos parentales. En este caso hablamos de apariencia de un nuevo carácter como ocurre por ejemplo en la planta coleus.

4. Nuevas mutaciones con efecto dominante: en ocasiones aparece un nuevo alelo con efecto dominante, rompiendo el patrón de dominancia que se conocía hasta el momento. Supongamos que tenemos un alelo A (dominante) y un alelo a (recesivo) para un locus. Es posible que en un momento determinado de la historia aparezca una mutación de novo originando un nuevo alelo a’ que domine sobre el alelo A (previamente dominante)

5. Epistasia: fenómeno que implica la interacción entre diferentes genes al expresar un determinado carácter fenotípico. En otras palabras, la expresión de uno o más genes dependen de la expresión de otro gen. Existe una interacción gen – gen a la hora de determinar el fenotipo del individuo. Por ejemplo, animales que posean el gen para producir pigmentación marrón solo se va a expresar (fenotipo pelaje marrón), si carece de la mutación del albinismo. En caso de que presenten la mutación génica del albinismo, el gen de la pigmentación quedará enmascarado por el del albinismo.

6. Pleiotropía: un único gen es responsable de diversos fenotipos que no están relacionados entre sí. Por ejemplo, la mutación génica que causa la anemia de células falciformes afecta a los eritrocitos o glóbulos rojos y confiere también cierta resistencia a la malaria.

Sin embargo, las leyes de Mendel siguen estando vigentes. Si nos vamos al ámbito de la salud, las leyes de Mendel se cumplen en lo que conocemos como enfermedades monogénicas o mendelianas – fibrosis quística, daltonismo.

No obstante, en un gran porcentaje de las enfermedades influyen muchos genes y factores ambientales. Este grupo de enfermedades son conocidas como enfermedades complejas o multifactoriales. Gracias a un tipo de estudio genético (GWAS; “genome-wide association studies”) es posible asociar variantes genéticas con enfermedades específicas y conocer la predisposición genética que presentas para las enfermedades complejas entre otros muchos rasgos (deporte, nutrición, comportamiento …)

Obtén tu kit genético de ADNTRO y descubre tu predisposición genética a padecer más de 100 enfermedades, a sufrir intolerancias y alergias de base genética, a distintos tipos de deportes (fuerza, resistencia…), tus orígenes étnicos, tu comportamiento acorde a tu genética y ¡mucho más!

es_ES